Search results for "Preclinical imaging"
showing 10 items of 42 documents
2013
Background To monitor viability of implanted genetically engineered and microencapsulated human stem cells (MicroBeads) in the mouse eye, and to study the impact of the beads and/or xenogenic cells on retinal integrity. Methodology/Principal Findings MicroBeads were implanted into the subretinal space of SV126 wild type mice using an ab externo approach. Viability of microencapsulated cells was monitored by noninvasive retinal imaging (Spectralis™ HRA+OCT). Retinal integrity was also assessed with retinal imaging and upon the end of the study by light and electron microscopy. The implanted GFP-marked cells encapsulated in subretinal MicroBeads remained viable over a period of up to 4 months…
In vivo comparison of DOTA based 68Ga-labelled bisphosphonates for bone imaging in non-tumour models.
2013
Bone metastases are a class of cancerous metastases that result from the invasion of a tumor into bone. The solid mass which forms inside the bone is often associated with a constant dull ache and severe spikes in pain, which greatly reduce the quality of life of the patient. Numerous (99m)Tc-labeled bisphosphonate functionalised complexes are well established tracers for bone metastases imaging. The objective of this research was to evaluate the pharmacokinetics and behaviour of three DOTA based bisphosphonate functionalised ligands (BPAMD, BPAPD and BPPED), using both (68)Ga μ-PET in vivo imaging and ex vivo biodistribution studies in healthy Wistar rats. The compounds were labelled with …
Imaging of Orthotopic Glioblastoma Xenografts in Mice Using a Clinical CT Scanner: Comparison with Micro-CT and Histology
2016
Purpose There is an increasing need for small animal in vivo imaging in murine orthotopic glioma models. Because dedicated small animal scanners are not available ubiquitously, the applicability of a clinical CT scanner for visualization and measurement of intracerebrally growing glioma xenografts in living mice was validated. Materials and Methods 2.5x106 U87MG cells were orthotopically implanted in NOD/SCID/ᵞc-/- mice (n = 9). Mice underwent contrast-enhanced (300 μl Iomeprol i.v.) imaging using a micro-CT (80 kV, 75 μAs, 360° rotation, 1,000 projections, scan time 33 s, resolution 40 x 40 x 53 μm) and a clinical CT scanner (4-row multislice detector; 120 kV, 150 mAs, slice thickness 0.5 …
BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications
2019
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. Thi…
Reconstruction of hyperspectral cutaneous data from an artificial neural network-based multispectral imaging system.
2011
International audience; The development of an integrated MultiSpectral Imaging (MSI) system yielding hyperspectral cubes by means of artificial neural networks is described. The MSI system is based on a CCD camera, a rotating wheel bearing a set of seven interference filters, a light source and a computer. The resulting device has been elaborated for in vivo imaging of skin lesions. It provides multispectral images and is coupled with a software reconstructing hyperspectral cubes from multispectral images. Reconstruction is performed by a neural network-based algorithm using heteroassociative memories. The resulting hyperspectral cube provides skin optical reflectance spectral data combined…
Review article: in vivo imaging by endocytoscopy
2011
Aliment Pharmacol Ther 2011; 33: 1183–1193 Summary Background Endocytoscopy (EC) enables in vivo microscopic imaging at 1400-fold magnification, thereby allowing the analysis of mucosal structures at the cellular level. In contrast to fluorescence imaging with confocal laser endomicroscopy which allows analysis of mucosal structures up to 250 μm in depth, EC is based on the principle of contact light microscopy and only allows visualisation of the very superficial mucosal layer. Aim To systematically review the feasibility and diagnostic yield of EC for in vivo diagnosis of diseases. Methods A systematic search of the literature on diagnostic interventions in the gastrointestinal tract u…
Targeted tumor imaging of anti-CD20-polymeric nanoparticles developed for the diagnosis of B-cell malignancies
2015
Sara Capolla,1 Chiara Garrovo,2 Sonia Zorzet,1 Andrea Lorenzon,3 Enrico Rampazzo,4 Ruben Spretz,5 Gabriele Pozzato,6 Luis Núñez,7 Claudio Tripodo,8 Paolo Macor,1,9 Stefania Biffi2 1Department of Life Sciences, University of Trieste, 2Institute for Maternal and Child Health – IRCCS “Burlo Garofolo”, Trieste, 3Animal Care Unit, Cluster in Biomedicine (CBM scrl), Trieste, Italy; 4Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy; 5LNK Chemsolutions LLC, Lincoln, NE, USA; 6Department of Medical, Surgery and Health Sciences, University of Trieste, Trieste, Italy; 7Bio-Target, Inc., University of C…
Molecular endoscopic imaging: the future is bright
2019
The prediction and final survival rate of gastrointestinal cancers are dependent on the stage of disease. The ideal would be to detect those gastrointestinal lesions at early stage or even premalignant forms which are difficult to detect by conventional endoscopy with white light optical imaging as they show minimum or no changes in morphological characteristics and are thus left untreated. The introduction of molecular imaging has greatly changed the pattern for detecting gastrointestinal lesions from purely macroscopic structural imaging to the molecular level. It allows microscopic examination of the gastrointestinal mucosa with endoscopy after the topical or systemic application of mol…
Noninvasive Monitoring of Lesion Size in a Heterologous Mouse Model of Endometriosis
2019
Here, we describe a protocol for the implementation of a heterologous mouse model in which progression of endometriosis can be assessed in real time through noninvasive monitoring of fluorescence emitted by implanted ectopic human endometrial tissue. For this purpose, biopsies of human endometrium are obtained from donor women ongoing oocyte donation. Human endometrial fragments are cultured in the presence of adenoviruses engineered to express cDNA for the reporter fluorescent protein mCherry. Upon visualization, labeled tissues with an optimal rate of fluorescence after infection are subsequently chosen for the implantation in recipient mice. One week prior to the implantation surgery, re…
Neodymium-140 DOTA-LM3: Evaluation of an In Vivo Generator for PET with a Non-Internalizing Vector
2017
140Nd (t1/2 = 3.4 days), owing to its short-lived positron emitting daughter 140Pr (t1/2 = 3.4 min), has promise as an in vivo generator for positron emission tomography (PET). However, the electron capture decay of 140Nd is chemically disruptive to macrocycle-based radiolabeling, meaning that an in vivo redistribution of the daughter 140Pr is expected before positron emission. The purpose of this study was to determine how the delayed positron from the de-labeled 140Pr affects preclinical imaging with 140Nd. To explore the effect, 140Nd was produced at CERN-ISOLDE, reacted with the somatostatin analogue, DOTA-LM3 (1,4,7,10- tetraazacyclododecane, 1,4,7- tri acetic acid, 10- acetamide N - p…